Minimum data set for electronic health card of schizophrenia

Marjan Ghazisaeidi1 PhD, Reza Safdari2 PhD, Mohammad Reza Khodaii2 PhD, Massoomeh Hamidi3 MS

1Department of Health Information Management, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran.
2Department of Health Information Management, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran.
3Department of Psychology, University of Social Welfare and Rehabilitation, Tehran, Iran.
4Master of Health Information Technology, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran.

ABSTRACT

Purpose: Having a clinical information system is a good solution for monitoring medical problems. This system is designed to improve the speed and accuracy of data management. The goal is to replace medical records with a clinical information system to support storing, processing and distributing data in all the sections of a healthcare center. The purpose of this research was to determine the minimum data that is needed in the schizophrenia electronic health card.

Materials and Methods: A number of 40 psychiatrists were surveyed in 2014. The information was gathered by a questionnaire and interviews. All data were analyzed using descriptive statistics.

Results: According to the results table and observed frequencies, from the 29 items had been questioned. All elements with the consent of more than 75% as key elements in electronic health card of schizophrenia were approved.

Conclusion: An electronic health card for schizophrenic patients can help the treatment team in providing effective healthcare and better medical records for the hospital admission staff to better manage patient information. It also reduces the problems of a patient’s family members and relative’s and simplifies the treatment process for schizophrenics.

Keywords: health electronic card; information technology; minimum data set; schizophrenia; Iran.

INTRODUCTION

Since the advent of computers and networking, the use of information technology for health services has been evolving at a relatively slow pace. In comparison with other industries such as banking, manufacturing and airlines, information technology (IT) for health services has been slow to catch up with the increasing demand and need for distributed sharing of health-related information.1 The flow of patient’s health care while he/she is under observation is often not captured or integrated into the workflow of the underlying health information system.2 The advent of smart card technology has paved the way for an individual to carry personal information in the form of a credit-card sized device. With the advantage of being robust and portable, smart cards represent a technology that can be employed in health care to provide distributed storage of patient’s medical records.3 A smart card is a credit-card sized plastic card with an embedded computer chip that can be memory or also include a microprocessor.4 A microprocessor chip can add, delete and otherwise manipulate information in its memory and hence offer complex data security schemes.5
Smart cards have been in use as health cards for more than 10 years.6

In the medical sector, it contains information about the patient: identification, emergency data (allergies, blood type, etc.), vaccination, drugs used, and the general medical record.7 Different parts of the data stored on the card can be protected with different levels of access control. These features make smart cards very useful for the medical domain.8 Schizophrenia is a progressing mental disorder. About 1% of the world’s population are suffering from it. Statistics show that more than half of mental institutes’ capacity is occupied by schizophrenic cases.9 About 1% of the population is affected by schizophrenia. The illness tends to develop between the ages of 16 and 30 years, and mostly persists throughout the patient’s lifetime.10 Patients with schizophrenia occupy about 25% of all psychiatric hospital beds1 and represent 50% of admissions to hospital.11 According to the World Health Organization report seven people in every 1000 people aged from 15 to 35 years old have schizophrenia. More than 50% of the schizophrenia cases do not receive the required attention. Furthermore, 90% of the schizophrenia cases are in developing countries.12 Because of their disorders, these patients are not able to give their medical information in time of emergency, and in most cases the patients’ family members and relatives do not know the vital and required information.

The purpose of this paper was to determine the required electronic health card’s data in a way that contains the information needed by the medical team to quickly access the precise personal and medical information and eliminate some problems through the process of treatment.

MATERIALS AND METHODS

This survey study was conducted in two psychiatric hospitals in Tehran in 2014. In the first stage a comparative study was carried out on data collection of some countries in the field of psychiatry, including United States, Australia, Canada and the UK. The data were extracted and translated from psychiatric forms of the four countries mentioned above. Also, some schizophrenic cases of Iran were used. Then a checklist was prepared based on demographic and clinical data. The validity of the checklist was confirmed by experts. The checklist was given to 40 psychiatrists. If 75% or more of the participants agreed with an item of the electronic health card, that item was confirmed. If 50% to 75% of the participants agreed with an item, that item was suggested to be used in the card. If less than 50% of the participants agreed with an item, that item was deleted from the checklist. All the gathered data were analyzed by descriptive statistics.

RESULTS

The collection of data on patients with schizophrenia included demographic and clinical information. The demographic information was divided into three categories:

- Basic information: name, surname, father’s name, gender, age, marital status, national security number, address and phone number
- Insurance information: type of insurance and insurance number
- Emergency calls information: name of the person who should be contacted at the time of emergency, his/her phone number and relationship with the patient

Clinical data were also divided into three categories:

- Medical history: blood type, having HIV, hepatitis, shock therapy, allergies, using allergy medications, record of suicide and other problems
- Psychiatric history: admission records in psychiatry hospitals, drug abuse and drug side effects
- Mental status: motor activity, patient’s appearance, mood, emotion, thoughts, orientation, memory, judgment and attitude

All the elements of the checklists were analyzed. Thus, from the 29 items that had been questioned, all that were agreed on by more than 75% of the surveyed psychiatrists were considered key elements in electronic health card of schizophrenic patients. So the minimum data that should be included for a schizophrenic patient was determined.

DISCUSSION

The data of healthcare centers are recorded in the health file of a person, and they are compared, combined, and interpreted by doctors or other healthcare practitioners. In addition, doctors use the data in diagnosis of illness, extension of treatment programs and analysis of healthcare impacts. The data related to a patient can be extracted from his/her health file and be saved in the database in a concentrated manner.

Minimum data set provides a fruitful source for analysis and planning of treatment as well as continuous analysis of patient’s improvement and his/her performance. The data also provide a useful source for policy-makers, healthcare specialists, and beneficiaries, resulting in improvement of...
healthcare and quality of treatment services. The whole data are an instrument for recording the most related and updated facts on the health information of a patient. Therefore, the data of a minimum data set should be easily accessible for healthcare providers. By providing the least variables related to circumstance of personal care including demographic and clinical ones and the care plan of the patient, such data could facilitate the sound communication amongst healthcare practitioners and on-time decisions by managers.13

Considering the huge amount of data that is produced in modern medicine, there is great need for storing...
and categorizing these data. Still only a minimum of data is collected. A standard method for collecting the key elements of data has been developed that makes satisfying the internal needs of institutions and the medical society. 

The investigated countries in this research were similar to Iran in terms of gathered demographic information such as name, surname, gender, age, telephone number, address, urgent calls, main complaint, medical history, hospital stay and mental evaluation and diagnosis. However, they were different from Iran in other aspects such as ethnicity, vicinity, legal case number, social history, state, date of vaccination and body control. Most of the data used in the above mentioned countries have been categorized into demographic and clinical groups. An electronic health card should be organized perfectly. It must contribute to the profitability of medical jobs and provide easy access to patient’s medical information.

In 2013, Mort and Latv categorized the data elements of their health card into three categories: (1) personal information such as name, date of birth, blood type, gender, and address; (2) patient information including allergies, previous illnesses of the patient, used medications, vaccinations and surgery dates; (3) biomedical information such as blood pressure, blood sugar and oxygen. Their study identified 16 data elements that were considered illness information for a general center, while the current paper specifies 29 data elements and considers clinical data just for a single disease only for psychiatric centers.

In a study by Hsu and colleagues the data of the health card included: administration, operations, vaccinations, allergy medication, and if patient was willing to donate organs, the needed data for donation. Some findings of this study, for example the history of allergies to drugs and the type of data are not consistent with the present research. In a study by Kardas and colleagues the data of the a patient health card at least included: patient’s name, surname, birth date, blood type, gender, address, home, work and mobile telephone numbers, emergency contact information and insurance information. Their study is in agreement with our study in terms of personal data.

CONCLUSION

Considering the great number of schizophrenics, there is a need for a systematic health care system for organizing the patients’ information. Currently there are a lot of problems in offering medical services to mental patients and in particular schizophrenics. There is no doubt that in the long run these problems will lead to bigger problems because of high costs of accessing schizophrenics’ valid information and thus prolonged treatment.

Concerns regarding the ignorance of society of these patients condition are a subject that has forced the healthcare policymakers to predict and arrangement a powerful solution to the improvement of these patients’ situation. Quick access to clinical information such as test results and radiology reduces the repeated medical actions and improves the services quality. Using the streaming data and the history of patient since the first day of his/her treatment will reduce the drug side effects and medical mistakes. So accessing clinical information that should be available through a clinical system seems vital.

Considering the importance of this issue, the primary data for schizophrenics’ electronic health card has been analyzed and based on the results the minimum of the information mentioned in this research will improve the efficiency of a health card in a way that provides quick access to the patient’s information making the process of treatment easier.

CONFLICT OF INTEREST

None declared.

ACKNOWLEDGEMENTS

This paper is based on a MA thesis by Massoumeh Hamidi. The authors thank all the psychiatrists of Razi and Roozbeh hospitals for participating in this study.

REFERENCES


Corresponding Author:
Massoomeh Hamidi, MS
Address: No 17, Farredanesh Ally, Ghods St., Enghelab Ave., Tehran, Iran.
Postal Code: 14178-64513
Tel: +98 21 33403234
Fax: +98 21 33401600
Mobile: +98 9123586908
E-mail: m.hamidi37@yahoo.com

Received: January 2015
Accepted: April 2015